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The stability properties of the flow past an infinitely long circular cylinder are studied
in the context of linear theory. An immersed-boundary technique is used to represent
the cylinder surface on a Cartesian mesh. The characteristics of both direct and
adjoint perturbation modes are studied and the regions of the flow more sensitive
to momentum forcing and mass injection are identified. The analysis shows that
the maximum of the perturbation envelope amplitude is reached far downstream of
the separation bubble, where as the highest receptivity is attained in the near wake
of the cylinder, close to the body surface. The large difference between the spatial
structure of the two-dimensional direct and adjoint modes suggests that the instability
mechanism cannot be identified from the study of either eigenfunctions separately.
For this reason a structural stability analysis of the problem is used to analyse
the process which gives rise to the self-sustained mode. In particular, the region
of maximum coupling among the velocity components is localized by inspecting the
spatial distribution of the product between the direct and adjoint modes. Results show
that the instability mechanism is located in two lobes placed symmetrically across the
separation bubble, confirming the qualitative results obtained through a locally plane-
wave analysis. The relevance of this novel technique to the development of effective
control strategies for vortex shedding behind bluff bodies is illustrated by comparing
the theoretical predictions based on the structural perturbation analysis with the
experimental data of Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 71).

1. Introduction
Spatially developing flows such as mixing layers, wakes and jets, may sustain in

specific parameter ranges, synchronized periodic oscillations over extended regions
of the flow field, displaying there an intrinsic dynamics characterized by a sharp
frequency selection. Under these conditions, the whole flow field behaves like a global
oscillator and the structure underlying the spatial distribution of the fluctuations is
usually termed ‘global mode’. The spatio-temporal evolution of such flows has been
clarified considerably only in recent years: progress was made through model equa-
tions, experiments, stability analysis and direct numerical simulations. A theoretical
approach to this class of problems was formulated by Chomaz, Huerre & Redekopp
(1991), Monkewitz, Huerre & Chomaz (1993) and Le Dizs et al. (1996) in the context
of flows with properties slowly varying in space. Relying only on a local analysis,
they were able to show that such flows may exhibit internal resonance when a region
of absolute instability (Briggs 1964; Bers 1975; Huerre & Monkewitz 1985, 1990)
of sufficient size develops. The resonance is self-excited and is characterized by a
well-defined frequency. The important link between the global and local instability
properties, both in the linear and fully nonlinear regime, is obtained via a WKBJ
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approach (Bender & Orszag 1978; Hinch 1994): the theory identifies a specific spatial
position in the absolutely unstable region which acts as a ‘wavemaker’, providing a
precise frequency selection criterion and revealing some important insights pertaining
to the forcing of these modes. In particular, in a linear setting, the complex global
frequency ωg is obtained by the saddle-point condition,

ωg = ω0(Xs) with
∂ω0

∂X
(Xs) = 0, (1.1)

based on the analytic continuation of the local absolute frequency curve ω0(X) in
the complex X-plane, with X denoting here the slow streamwise variable. Although
this asymptotic theory yields accurate predictions for slowly evolving flows, in many
real configurations the assumptions underlying the WKBJ approach are not met
very closely. This is the case of bluff-body wakes, where strong non-parallel effects
prevent us from using asymptotic theory. In such cases, a numerical modal analysis
must be used to determine the characteristics of the instability and to find its critical
Reynolds number. One of the most common examples is given by the flow around an
infinitely long circular cylinder. This type of configuration has been investigated for
a long time and accurate experimental data are now available to test the theoretical
predictions. The steady two-dimensional symmetric flow existing around the cylinder
at low Reynolds numbers becomes unstable when Re is increased beyond the critical
value Rec ≈ 47 (Provansal, Mathis & Boyer 1987). The transition from the steady to
the unsteady state occurs via a Hopf bifurcation (Provansal, Mathis & Boyer 1987;
Sreenivasan, Strykowski & Olinger 1987; Noack & Eckelmann 1994) which breaks the
symmetry of the flow field and gives rise to a periodic self-sustained structure usually
termed the von Kármán vortex street. For Reynolds numbers lower than Rec,2, where
180 � Rec,2 � 190, the flow remains strictly two-dimensional (Williamson 1988, 1996;
Karniadakis & Triantafyllou 1992; Barkley & Henderson 1996) so that the occurrence
of the first instability can be predicted through a two-dimensional analysis.

In recent years, direct numerical simulations have been repeatedly used to study
the development of the von Kármán vortex street and to locate the onset of the
instability. Solving the full nonlinear temporal problem, however, is not the only way
to predict the bifurcation point. An alternative approach, which can unveil many
of the features of the global mode dynamics, consists in using linear theory: in
this approach, the growth of the instability is predicted by solving a two-dimensional
generalized eigenvalue problem derived from a discretization of the linearized Navier–
Stokes equations. The large memory requirements necessary for the implementation
of this method have drastically limited its use in the past. Examples can be found
in Winters, Cliffe & Jackson (1986) and Jackson (1987), who determined the critical
Reynolds number and the vortex shedding frequency by solving an extended set of
time-independent equations generated by a finite-element procedure. Zebib (1987)
and Hill (1992) located the critical point, evaluating both the base flow and the
eigenvalues with a more accurate spectral technique. The large memory capabilities
of modern computers have renewed the interest in this approach, which can now
be used to tackle more complex flow configurations. In this paper, a global analysis
of the flow around a circular cylinder is performed using an immersed-boundary
technique. The properties of the adjoint eigenfunctions are here used in a novel way
to locate the core of the instability and to verify the predictions based on asymptotic
theory. Results obtained with the latter approach are used for comparison. Finally,
the new technique is used to perform an analysis of the eigenvalue sensitivity to
structural perturbations of the governing equations and the results are compared
with the numerical and experimental data of Strykowski & Sreenivasan (1990).
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2. Problem formulation
We investigate the stability characteristics of the two-dimensional flow arising

around an infinitely long circular cylinder invested by a uniform stream. A Cartesian
coordinate system is placed in the cylinder centre, with the x-axis pointing in the
flow direction and the z-axis running along the cylinder centreline. For Re< Re2,c,
the fluid motion can be described by the two-dimensional unsteady incompressible
Navier–Stokes equations

∂U
∂t

+ U · ∇U = −∇P +
1

Re
�U, (2.1a)

∇ · U = 0, (2.1b)

where U is the velocity vector with components U = (U, V ) and P is the reduced
pressure. Equations (2.1) are made dimensionless using the cylinder diameter D∗ as
the characteristic length scale, the velocity of the incoming uniform stream U ∗

∞ as the
reference velocity and ρ∗U ∗2

∞ as the reference pressure. Thus,

Re =
U ∗

∞D∗

ν∗ (2.2)

is the Reynolds number based on the cylinder diameter. Equations (2.1) are supple-
mented by the usual boundary conditions. In particular, on the surface of the cylinder
Γc the no-slip and no-penetration conditions require both velocity components to
vanish,

U = 0 on Γc, (2.3)

while in the far field the flow approaches the incoming uniform stream asymptotically:

U → U∞ i as x2 + y2 → ∞. (2.4)

The indeterminacy of the pressure field is removed by specifying the value of p at a
given point of the domain. Here and in the following, the symbols i and j are used
to indicate the unit vectors of the Cartesian system of coordinate, while ‖ ‖ and | |
denote, respectively, the Euclidean norm of a vector and the modulus of a complex
number.

2.1. Linear stability

The onset of the instability is studied in linear theory by using a normal-mode
analysis. The total field Q = {U, P } is decomposed into the sum of a steady part and
a small unsteady perturbation as

U(x, y, t) = Ub(x, y) + ε u(x, y, t), (2.5a)

P (x, y, t) = Pb(x, y) + ε p(x, y, t), (2.5b)

where the amplitude ε is assumed small. Introducing (2.5) into (2.1) and linearizing,
we obtain two problems describing the spatial structure of the base flow and the
evolution of the unsteady perturbation. In particular, the base flow is governed by
the steady version of (2.1), whereas the perturbed field is described by the following
set of linearized unsteady Navier–Stokes equations (LNSE)

∂u
∂t

+ L{Ub, Re}u = −∇p + f (2.6a)

∇ · u = m. (2.6b)
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In the above equations, L stands for the linearized Navier–Stokes operator which in
vector notation can be written as

L{Ub, Re}u = Ub · ∇u + u · ∇Ub − 1

Re
�u, (2.7)

while the source terms f = {fx, fy} and m have been introduced to account for
a possible physical forcing mechanism. In this paper, we will assume that both the
forcing and the initial conditions used to solve problem (2.6) have compact support so
that all the components of the perturbation q = {u, p} vanish as r =(x2 +y2)1/2 tends
to infinity. Thus, the appropriate conditions used to solve the differential problem
(2.6) can be stated as

u(x, y, t) = uw(x, y, t) on Γc ∀t, (2.8a)

q(x, y, t) → 0 as r → ∞ ∀t, (2.8b)

u(x, y, t) = uin(x, y) for t = 0, (2.8c)

where we have denoted with uin(x, y) the initial condition and with uw(x, y, t) the
value assumed by the solution on the cylinder surface Γc. In particular, in this paper,
we are interested in the global modes of the linearized Navier–Stokes equations, i.e.
non-trivial solutions of (2.6) of the form

u(x, y, t) = û(x, y)exp(σ t), (2.9a)

p(x, y, t) = p̂(x, y)exp(σ t). (2.9b)

Here, σ is a complex number while the complex field q̂ = {û, p̂} satisfies the homo-
geneous equations

σ û + L{Ub, Re}û + ∇p̂ = 0, (2.10a)

∇ · û = 0, (2.10b)

along with homogeneous boundary conditions on the cylinder surface

û = 0 on Γc (2.11)

and appropriate far-field radiation conditions. This means that far enough from the
cylinder, the perturbation behaves locally as an outgoing plane wave. While this last
requirement enforces the correct causality relation, it does not generally imply that
the disturbance vanishes at infinity. For the cylinder case, however, the spreading
of the wake with the resulting attenuation of the vorticity and the rapid decay of
the outer potential field produce a reduction of the perturbation amplitude with the
radial distance. Thus, in our case, the far-field conditions may be formulated as

q̂ = {û, p̂} → {0, 0} as r → ∞. (2.12)

The system of equations (2.10) along with the boundary conditions (2.11) and (2.12)
gives rise to a generalized eigenvalue problem for the complex frequency σ . For
Re(σ ) < 0 the flow is stable while for Re(σ ) > 0 the mode is unstable and the perturba-
tion grows exponentially in time until nonlinear effects become important.

2.2. Adjoint equations

The adjoint of a linear operator is indeed one of the most important and useful
concepts in functional analysis. Its application to the solution of differential equations
is strictly related to the use of Green’s functions and traces back to the original work
of Lagrange in the eighteenth century. In fluid mechanics, it has been largely used
to tackle problems in receptivity, transition, turbulence control and meteorology. The
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adjoint linearized Navier–Stokes operator is defined using the generalized Lagrange
identity (Ince 1926). For any pair of suitably differentiable fields q ≡ {u, p} and
g+ ≡ { f +, m+}, which need not satisfy equations (2.6), the following Lagrange identity
is constructed using differentiation by parts[(

∂u
∂t

+ L{Ub, Re}u + ∇p

)
· f + + ∇ · um̂+

]

+

[
u ·

(
∂ f +

∂t
+ L+{Ub, Re} f + + ∇m+

)
+ p ∇ · f +

]
=

∂u · f +

∂t
+ ∇ · J(q, g+). (2.13)

In (2.13), J(q, g+) is the ‘bilinear concomitant’

J(q, g+) = Ub(u · f +) +
1

Re
(∇ f + · u − ∇u · f +) + m+ u + p f + (2.14)

and L+ is the adjoint linearized Navier–Stokes operator which in vector notation can
be expressed as

L+{Ub, Re} f + = Ub · ∇ f + − ∇Ub · f + +
1

Re
� f +. (2.15)

Integration of (2.13) over space and time and use of the divergence theorem gives
the generalized Green’s theorem (Morse & Feshbach 1953) for the LNSE. Examining
the second term in the square brackets on the left-hand side of the Lagrange identity
(2.13), we define the adjoint equations as

∂ f +

∂t
+ L+{Ub, Re} f + + ∇m+ = 0, (2.16a)

∇ · f + = 0. (2.16b)

It is judicious manipulation of the right-hand side of (2.13) that engenders the
usefulness of the adjoint solutions g+. In this paper, we are mainly interested in
the adjoint modes, i.e. non-trivial solutions of the adjoint linearized Navier–Stokes
equations (2.16) of the form

f +(x, y, t) = f̂
+
(x, y)exp(−σ t), (2.17a)

m+(x, y, t) = m̂+(x, y)exp(−σ t). (2.17b)

More specifically, if q(x, y, t) = q̂(x, y) exp(σ t) is a global mode of the LNSE
corresponding to the eigenvalue σ , we define g+(x, y, t) = ĝ+(x, y) exp(−σ t) its adjoint
global mode if the complex field ĝ+ = { f̂

+
, m̂+} is a non-trivial solution of equations

−σ f̂
+

+ L+{Ub, Re} f̂
+

+ ∇m̂+ = 0, (2.18a)

∇ · f̂
+

= 0, (2.18b)

satisfying homogeneous boundary conditions on the cylinder surface

f̂
+
(x, y) = 0 on Γc (2.19)

and appropriate radiation conditions in the far field. As for the direct mode, this does
not generally mean that the adjoint field has to vanish as the radial distance r → ∞.
However, in our case, the particular structure of the base flow leads to a rapid decay
of the adjoint mode, so that the far-field conditions become

ĝ+ = { f̂
+
, m̂+} → 0 as r → ∞. (2.20)
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Figure 1. Schematic picture representing the Bromwich integration path and the poles
in the complex σ -plane.

3. Receptivity to initial conditions and external forcing
The adjoint equations can be used to evaluate the effects of generic initial conditions

and forcing terms on the time-asymptotic behaviour of the solution of (2.6) and (2.8).
A way of achieving this is to take a Laplace transform in time of (2.6) and solve for
the transformed field q̂ = {û, p̂}. This is defined as

q̂(x, y, σ ) =

∫ +∞

0

q(x, y, t)exp(−σ t) dt (3.1)

and satisfies the inhomogeneous system of second-order partial differential equations

σ û + L{Ub, Re}û + ∇p̂ = f̂ + uin, (3.2a)

∇ · û = m̂, (3.2b)

along with the boundary conditions

û(x, y, σ ) = ûw(x, y, σ ) on Γc, (3.3a)

û(x, y, σ ) → 0 as r → ∞. (3.3b)

In the previous formulae f̂ and m̂ are the Laplace transforms of the forcing functions
f (x, y, t) and m(x, y, t), ûw represents the Laplace transform of the boundary
condition ûw , while uin(x, y) = u(x, y, t =0) denotes the initial condition used to solve
the time-dependent problem (2.6). Once the solution of (3.2) and (3.3) is available, we
recover the physical variables in the time domain in terms of the Bromwich integral
in the complex σ -plane as

q(x, y, t) =
1

2πi

∫ γ+i∞

γ −i∞
q̂(x, y, σ )exp(σ t) dσ, (3.4)

where γ is a sufficiently large real positive number such that all the singularities
of q̂(x, y, σ ) are located to the left of the integration path (see figure 1). The time-
asymptotic behaviour of (3.4) can be estimated by the residues theorem. Suppose
there exists an unstable global mode with eigenvalue σ1, i.e. a non-trivial solution q̂1

of (2.10), (2.11), (2.12) with σ = σ1. In such a case, the Laplace transform q̂(x, y, σ )
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has a pole at σ = σ1. Since the asymptotic uniform flow is stable, no branch points
exist in the half-plane Re(σ ) > 0. As a consequence, we can deform the integration
path by lowering the value of γ and use the residues theorem to rewrite the solution
as

q(x, y, t) = R[q̂(x, y, σ )]σ=σ1exp(σ1t) +
1

2πi

∫ γ1+i∞

γ1−i∞
q̂(x, y, σ )exp(σ t) dσ. (3.5)

Here, R[q̂(σ )]σ=σ1
denotes the residue of q̂(x, y, σ ) at σ = σ1, while the integration

path lies now to the left of the pole σ1 (0 < γ1 <Re(σ1)). By assumption, the first
term on the right-hand side of (3.5) grows exponentially in time and characterizes the
long-time behaviour of the solution. In order to study the effect of the forcing terms,
initial and boundary conditions on the time-asymptotic response of the system, we
first express the residue R[q̂(x, y, σ )]σ=σ1

in terms of the eigenfunction q̂1 = {û1, p̂1}
of (2.10). More specifically, if σ = σ1 is a simple pole for the Laplace-transformed
field, then we have

R[q̂(x, y, σ )]σ=σ1
= lim

σ→σ1

(σ − σ1)q̂(x, y, σ ) = A1q̂1(x, y, σ1), (3.6)

where A1 represents the amplitude of the global mode. This amplitude depends on the
specific forcing functions, initial and boundary conditions chosen to solve the forced
problem (3.2). Its value can be determined by suitable application of the generalized
Lagrange identity (2.13) to the fields

q(x, y, t) = q̂(x, y, σ )exp(σ t), (3.7)

g+
1 (x, y, t) = ĝ+

1 (x, y, σ1)exp(−σ1t), (3.8)

where q̂ = {û, p̂} is the solution of the transformed equations (3.2), (3.3) and ĝ+
1 =

{ f̂
+

1 , m̂+
1 } denotes the adjoint global mode corresponding to the eigenvalue σ1. Apply-

ing the Lagrange identity, integrating over the flow domain D and using the boundary
conditions and the divergence theorem we arrive at the identity:∫

D
(σ û + L{Ub, Re}û + ∇p̂) · f̂

+

1 + ∇ · û m̂+
1 dS

+

∫
D

û · (−σ1 f̂
+

1 + L+{Ub, Re} f̂
+

1 + ∇m̂+
1 ) + p̂∇ · f̂

+

1 dS

=

∫
D
(σ − σ1)û · f̂ +

1 dS −
∮

Γc

J(q̂, ĝ+
1 ) · n dl, (3.9)

relating the transformed variables and the adjoint global mode. Here, n denotes the
cylinder’s normal, while dS and dl stand, respectively, for the surface differential and
the arclength differential. Recalling now equations (2.18), (3.2) and (3.6) and taking
the limit as σ → σ1, we obtain:

A1 =

∫
D

f̂
+

1 · [uin + f̂ ] + m̂+
1 m̂dS +

∮
Γc

[
1

Re
∇ f̂

+

1 · ûw + m̂+
1 ûw

]
· n dl

∫
D

f̂
+

1 · û1 dS

(3.10)

expressing the dependence of the global mode amplitude from the forcing functions,
boundary and initial conditions. Because of linearity, the effects of each term in the
numerator can be studied separately once the direct and adjoint eigenfunctions are
determined numerically and a suitable normalization for both is chosen.
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In particular, if the forcing functions or the initial conditions are localized in
space (i.e. have a delta function form) the amplitude of the resulting mode is easily
determined from the knowledge of the local values of f +(x, y) and m+(x, y). In this
sense, the adjoint field represents the Green’s function for the receptivity problem.

4. Numerical approach
Several numerical techniques are available to solve the incompressible Navier–

Stokes equations efficiently, each having advantages and drawbacks. The simple
geometry treated in this paper makes the problem particularly suitable for the use of
spectral techniques in cylindrical coordinates. Examples can be found in Zebib (1987),
Yang & Zebib (1988), Hill (1992), Mittal & Balachandar (1996). More complex spec-
tral and finite-element formulations were successively used by Noack & Eckelmann
(1994), Barkley & Henderson (1996) and Blackburn & Henderson (1999) to study
the three-dimensional stability of the cylinder wake and the two-dimensional vortex
patterns generated by an oscillating cylinder. Another possible approach, which is
often used to treat problems with complex geometries and moving boundaries, is
given by the immersed-boundary technique. In this latter method, the equations
are discretized using finite differences on a simple orthogonal mesh (in most cases
Cartesian) whose nodes do not necessarily coincide with the body surface. The
boundary conditions are then imposed by using an appropriate interpolation which
preserves the order of accuracy of the numerical scheme.

In a preliminary stage of this study, the stability of the flow field was investigated
by using cylindrical coordinates and a mixed spectral finite-difference approach. The
velocity components were expanded in Fourier modes, while the radial derivatives
were approximated by standard second-order finite differences. With this scheme we
were able to re-obtain most of the results found in the literature. The computations,
however, showed that near the critical Reynolds number the maximum of the
eigenfunction is attained far behind the cylinder surface, in a region which extends
beyond the computational domain used by Zebib (1987) and Hill (1992). This was
unexpected since both of them obtained converged results for the eigenvalues. In order
to explain this behaviour we decided to investigate the far-field spatial structure of the
direct and adjoint modes. Cylindrical coordinates, however, are not very suitable for
this purpose since their use involves a rapid degradation of the azimuthal resolution
with radial distance. As a consequence, a large number of Fourier modes (too large
for our computational facilities) were required to accurately resolve the details of the
flow in the far wake. The immersed-boundary technique, on the other hand, is more
appropriate treating this kind of problem since with this approach we can achieve a
better resolution of the wake region with substantial memory savings. Furthermore,
the use of a rectangular Cartesian mesh allows an easier treatment of the outflow
numerical boundary conditions, while the effects of different body geometries on the
stability of the flow can easily be accounted for with little extra effort. Considering
all these issues, we decided to tackle the problem using this last approach.

4.1. Immersed boundary

The steady version of (2.1) and the linearized equations (2.10), both written in con-
servative form, are discretized with second-order finite-differences over a staggered
Cartesian mesh. In order to resolve the details of the flow in the near wake better,
Roberts stretching transformations (Tannehil, Anderson & Pletcher 1997, pp. 336–337)
are used to cluster the mesh points smoothly near the cylinder centre (xc, yc). In
particular, the coordinates (xi, yj ) of a node in the computational mesh are obtained



Structural sensitivity of the first instability of the cylinder wake 175

20

x

y

–20 –10 0 10 20 30 40 50
–20

–10

0

10

Figure 2. An example of a mesh grid used for computations. Only one out of ten lines passing
through the pressure nodes is drawn to make the graph clearer (τx = 6.4, τy = 6.8, Lx = 75,
Ly = 40).

by evaluating the following expressions

xi = xc

{
1 +

sinh [τx(i/nx − Bx)]

sinh (τxBx)

}
, yj = yc

{
1 +

sinh [τy(i/ny − By)]

sinh (τyBy)

}
(4.1)

where i and j are the grid indexes and Bx and By are coefficients given by

Bx =
1

2τx

ln

[
1 + (exp(τx) − 1)(xc/Lx)

1 + (exp(−τx) − 1)(xc/Lx)

]
, By =

1

2τy

ln

[
1 + (exp(τy) − 1)(yc/Ly)

1 + (exp(−τy) − 1)(yc/Ly)

]
.

(4.2)

In these formulae, Lx and Ly are the horizontal and vertical widths of the computa-
tional mesh, while nx and ny represent the number of points used in the x and y

directions, respectively. The two stretching parameters τx and τy control the clustering
of points and can range from zero (no stretching) to large values that produce the
largest refinement near (xc, yc). After these transformations, a simple translation is
performed to place the cylinder centre at (0, 0) exactly. As an example, figure 2 shows
a typical mesh used in the computations: here only one out of every ten lines is drawn
to make the graph more readable.

The presence of the cylinder is represented by an immersed-boundary technique sim-
ilar to that used by Fadlun et al. (2000). Thus, the entire domain is covered by compu-
tational cells and there is no need for body-fitted coordinates. The boundary conditions
on the surface of the cylinder Γc are imposed through a linear interpolation which pre-
serves the second-order accuracy of the finite-difference scheme. Several interpolation
procedures have been proposed in the past: in Fadlun et al. (2000), the velocity at the
first grid point external to the body is obtained by linearly interpolating the velocity at
the second grid point (which is instead obtained by directly solving the Navier–Stokes
equations) and the velocity at the body surface; in their numerical algorithm this
condition is approximately enforced by applying momentum forcing inside the flow
field. The interpolation direction is either the streamwise or the transverse direction,
but the choice between them is not specified. Mohd-Yusof (1997) used a more complex
interpolation scheme which involved forcing the Navier–Stokes equations both inside
and on the surface of the body. In particular, the no-slip conditions were imposed at
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Figure 3. Example of immersed-boundary grid: �, horizontal velocity component, u;
×, vertical velocity components v. Lines connect points involved in the interpolation.

the point of the boundary touched by the wall-normal line passing through the closest
internal point, using bilinear interpolations for this purpose. Finally, Kim, Kim &
Choi (2001) introduced a mass injection forcing to satisfy the continuity equation for
the cells containing the immersed boundary. When the number of points used in the
simulation is sufficient to represent the details of the body shape, all these schemes
have similar performances, showing that the substantial increase in the code complex-
ity owing to the use of sophisticated interpolation procedures is often not repaid by
an adequate improvement of the numerical accuracy. We therefore decided to follow
a slightly different but simpler approach. The interpolation was performed using the
point closest to the body surface (which can be either an internal or an external
point) and the following point on the exterior of the cylinder. The interpolation is
performed either in the streamwise or transverse direction according to which one is
closest to the local normal. An example of a grid used for the immersed-boundary
technique and the nodes involved in the interpolation scheme are shown in figure 3.

On the external boundary of the rectangular computational domain Γext, the
conditions depicted in figure 4 are used to close the system of algebraic equations.
In particular, for both the base flow and the perturbation, the values of the velocity
components are imposed at the inlet boundary Γin,

U = 1, V = 0 on Γin, (4.3a)

u = 0, v = 0 on Γin, (4.3b)

symmetry boundary conditions are enforced on the upper and lower boundaries Γup

and Γlow

∂U

∂y
= 0, V = 0 on Γup ∪ Γlow, (4.4a)

∂u

∂y
= 0, v = 0 on Γup ∪ Γlow, (4.4b)
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Figure 4. Computational domain and summary of the numerical boundary conditions used
for the computations of the steady and unsteady linearized Navier–Stokes equations.

while the pressure and the streamwise derivative of the horizontal velocity components
are set to zero on the outlet boundary Γout

∂U

∂x
= 0, P = 0 on Γout, (4.5a)

∂u

∂x
= 0, p = 0 on Γout. (4.5b)

These conditions enforce through the continuity equation a vanishing vertical velocity
component on the outflow boundary. While for the base flow this requirement does
not represent a problem, for the perturbation the application of such conditions results
in unphysical oscillations of the solution in cases in which the global mode decays
too slowly for the computational domain used. In order to allow more flexibility
and obtain smoother fields, a second set of outflow boundary conditions has been
implemented and tested. For both the perturbation and the base flow we impose on
the outflow boundary

∂V

∂x
= 0,

∂P

∂x
= 0 on Γout, (4.6a)

∂v

∂x
= 0,

∂p

∂x
= 0 on Γout, (4.6b)

and prescribe the value of the pressure at a given point in the domain in order to
remove its indeterminacy. Tests have shown that for the base flow, the differences in the
solutions computed with (4.5a) and (4.6a) are negligible. The same conclusion is valid
for the perturbation when the eigenfunction tail quickly decreases in the downstream
direction. A benefit is instead achieved in cases in which the computational domain is
not large enough and the global mode decays slowly. In those cases, conditions (4.6b)
partially reduce the oscillations observed with (4.5) and produce smoother solutions.
The differences in the computed eigenvalues are, however, always negligible. An
explanation for such behaviour will be given in § 8, where a structural stability
analysis for the flow around a circular cylinder is developed.

4.2. Base flow

The nonlinear system of algebraic equations deriving from the discretization of the
nonlinear equations (2.1), along with their boundary conditions (4.3a), (4.4a) and
(4.5a) (or (4.6a)), is solved by a Newton–Raphson procedure: at each step the linear
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system

A
(
Re, W (n)

b

)
· w(n)

b = −rhs(n) (4.7)

is inverted using a sparse LU decomposition and the base flow is then updated as

W (n+1)
b = W (n)

b + w
(n)
b . (4.8)

In this way all the equations of the system are treated simultaneously and the pro-
cedure is iterated until the elements of the residual vector rhs(n)

b become smaller in
magnitude than a given tolerance. In formula (4.7), A represents a large banded matrix
obtained by the linearization of the original system of algebraic nonlinear equations,
while W b = {(Ui,j , Vi,j , Pi,j ) : 0 � i � nx, 0 � j � ny} and wb = {(�ui,j , �vi,j , �pi,j ) :
0 � i � nx, 0 � j � ny} are vectors of triplets containing the values of the base flow
components and their perturbation at different grid nodes, ordered in a lexicographic
fashion.

4.3. Eigenvalue solver and adjoint field

Once the base flow is determined, the system of equations (2.10) is used to perform the
stability analysis. After discretization, the equations and their boundary conditions
(4.3b), (4.4b) and (4.5b) are recast in the form

[A(Re, W b) + σB] · w = 0, (4.9)

where w = {(ûi,j , v̂i,j , p̂i,j ) : 0 � i � nx, 0 � j � ny} is the right (or direct) eigenvector
and B represents a diagonal matrix whose entries are 1 if the corresponding row
contains the discretization of the horizontal or vertical component of the momentum
equation, 0 otherwise. In order to study the receptivity of the dominant mode to the
initial conditions and to the forcing terms, we must also compute the adjoint field
ĝ+. This can be achieved in two different ways: a first possibility is to consider the
discrete adjoint problem

ξ · [A(Re, W b) + σB] = 0. (4.10)

Here the computational vector ξ ≡ {(f̂ +
x (xi, yj ), f̂

+
y (xi, yj ), m̂

+(xi, yj )) : 0 � i � nx, 0 �
j � ny} is the left eigenvector of the discrete problem and, as can be easily deduced, it
represents an approximation of the adjoint mode satisfying (2.18) and (2.19). Another
possibility to evaluate numerically the adjoint field ĝ+ is to discretize directly the
adjoint equations (2.18) and then determine the eigenvalues and the right eigenvectors
of the resulting discrete problem. If the discretization is consistent, the two approaches,
one based on the left eigenvectors of the discretized direct problem and one based
on the right eigenvectors of the discretized adjoint problem, are equivalent and both
solutions converge to the adjoint mode of the continuous differential equation. Here,
we decided to rely on the first approach because it is easier to apply and automati-
cally takes into account the correct boundary conditions for the adjoint field. The
generalised eigenvalue problems (4.9) and (4.10) are solved numerically for σ by a
variant of the classical inverse-iteration algorithm (see for example Golub & Van
Loan 1989). If σ (n), ξ (n) and w(n) are, respectively, an approximation of the eigenvalue,
left (adjoint) and right (direct) eigenvector of the discretized problem, a better estimate
of these quantities is obtained by first evaluating

Cn = A(Re, W b) + σ (n)B, (4.11)

w(n+1) = C−1
n ·

(
B · w(n)

)
, (4.12)

ξ (n+1) = ξ (n) · B · C−1
n , (4.13)

z(n+1) = ξ (n+1) · B, (4.14)
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and then updating the eigenvalue as

σ (n+1) = σ (n) +
z(n+1) · w(n)

z(n+1) · w(n+1)
. (4.15)

The whole procedure is iterated until �σ (n+1) = |σ (n+1) − σ (n)| becomes smaller than a
given tolerance. To avoid an unbounded growth of the solution, at each iteration step
the resulting vectors are rescaled in a suitable manner. In this paper, for example, the
right and left eigenvectors are normalized by requiring

maxx,y∈D{|û(x, y)|} = 1,

∫
D

f̂
+ · û dS = 1. (4.16)

From a practical point of view this is achieved by imposing at each iteration a
discrete form of (4.16). The numerical procedure described above is obtained by
simultaneously applying the classical inverse iteration algorithm to both the direct and
adjoint problems (4.9) and (4.10). Instead of performing two separate computations,
however, the right and left eigenvectors are updated simultaneously at each iteration:
in this way the solution of the two problems proceeds in a coupled way and requires
only a single LU decomposition for each step. In general, the convergence of the
algorithm depends on the initial guesses used for the eigenvalue and the eigenvectors.
Depending on the starting values, the numerical procedure described above may
converge to the desired mode, to a different mode or even diverge. Our experience
shows that if the value of σ (0) is chosen close enough to the eigenvalue of the desired
mode, the algorithm converges quadratically to the correct solution independently
from the guesses used for the eigenvectors.

The numerical vector ξ contains the components of the adjoint field at different
grid locations and therefore it expresses the sensitivity of the unsteady flow to the

forcing terms f̂ and m̂ in (2.10). The components of the vector z ≡ (ξ · B) = {(û+
x (xi, yj ),

v̂+
y (xi, yj ), p̂

+(xi, yj )) : 0 � i � nx, 0 � j � ny}, on the other hand, measure the recep
tivity to the initial conditions used to march the unsteady linearised Navier–Stokes
equations (2.6). This can be verified easily by discretizing in space the linearized
equations of motion and then repeating for the semi-discrete equations the same steps
as performed in § 3. As expected, the component p+(xi, yj ) in z is identically zero,
since the initial-value problem for the LNSE needs no initial conditions on pressure.
Furthermore, the components f̂ +

x and f̂ +
y of ξ coincide with the components û+

x

and v̂+
y of z in the interior of the domain, but not on the cylinder surface. The

computational vector ξ , in fact, includes the effects of the boundary conditions on Γc

and therefore does not vanish there. These characteristics are trivial consequences of
the structure of the matrix B.

5. Base flow characteristics and code validation
The numerical procedure described in the previous section was used to evaluate the

steady flow and to carry out the stability analysis. Calculations were performed on
grids of different sizes. The largest domain considered was a [−25 : 140] × [−20 : 20]
rectangle with 900 × 420 grid points which was particularly valuable for studying the
asymptotic structure of the direct eigenfunctions and locating their maxima. However,
in order to reduce the computational time and increase the resolution in the near
wake, most of the results were obtained on the smaller domain [−25 : 50] × [−20 : 20]
with 600 × 350 grid points. In all cases, the nodes were smoothly clustered around
the cylinder centre according to the transformations (4.1). Refinement tests were
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Re = 20 Re = 40

CD Lw CD Lw

Dennis & Chang (1970) 2.05 0.94 1.52 2.35
Coutanceau & Bouard (1977) . . . 0.73 . . . 1.89
Fornberg (1980) 2.00 0.91 1.50 2.24
Ye et al (1999) 2.03 0.92 1.52 2.27
Kim et al. (2001) . . . . . . 1.51 . . .
Current [−25 : 50] × [−20 : 20] 2.05 0.92 1.54 2.24

Table 1. Drag coefficient CD and length of the wake bubble Lw (measured from the
rear stagnation point).

performed to verify the second-order accuracy of the finite-difference scheme, while
the influence of the external boundary conditions on the base flow properties was
checked by varying the size of the computational domain. The main characteristics
of the steady flow were validated with data available in the literature. As an example,
table 1 compares the predicted drag coefficient CD and the length of the recirculating
bubble Lw (measured from the rear stagnation point) obtained from computations
at Re= 20 and Re =40 with the corresponding values reported by other authors. In
order to avoid complications related to the presence of the immersed boundary, CD

was computed from the momentum flux across a rectangle surrounding the cylinder.
Results show a reasonable agreement with the most recent numerical computations.
The small differences among the values of the drag coefficient are mainly due to
the numerical boundary conditions used to solve the nonlinear governing equations.
For example, at the inlet, top and bottom boundaries Ye et al. (1999) specified the
velocity corresponding to the potential flow past a cylinder, whereas here the simpler
conditions (4.3a) and (4.4a) were used. Note that imposing symmetry boundary
conditions conceptually corresponds to studying the flow past an infinite array of
cylinders. The computed value of CD , therefore, slowly tends to the real drag coefficient
as the width Ly of the computational domain is increased. In any case, the maximum
streamwise extent of the separation bubble is predicted well by our technique; as
can be seen in figure 6, the size of the recirculating region increases almost linearly
with Re, a phenomenon already reported and measured by Zielinska et al. (1997).
Bearing in mind that the main issue of the paper is the understanding of the global
mode structure and not the prediction of the drag coefficient, these results are deemed
sufficient validation of the code for the present purposes. As an example of unstable
steady flow, figure 5 shows the streamline pattern around the cylinder at Re = 50.

6. Stability and receptivity results
The stability characteristics of the base flow are assessed by monitoring the

behaviour of the most unstable mode of the linearized equations of motion: to this end
it is useful here to remember that the modes of this problem occur in complex
conjugate pairs. The critical Reynolds number Rec at which the steady base flow first
becomes unstable was determined by performing a parametric study of the eigen-
value problem (4.9). Figure 7 shows the amplification rate Re(σ1) and the Strouhal
number St= Im(σ1)/2π for the first mode. According to our calculations, the onset
of the instability occurs at Rec ≈ 46.7, a value which is in good agreement with the
numerical results of Jackson (1987), Dusĕk, Le Gal & Fraunié (1994) and Sheard,
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Figure 5. Streamlines at Re= 50. The isolines outside the separation bubble were produced
using a constant contour-level spacing of 0.2, while a spacing of 0.005 was necessary to visualize
the slow motion occurring in the recirculating region.
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Figure 6. Length of the wake bubble (measured from the rear stagnation point)
for different Reynolds number.

Thompson & Hourigan (2001) and with the threshold of 47 observed in experiments
(Mathis, Provansal & Boyer 1984; Provansal et al. 1987; Williamson 1996). The
Strouhal number curve has a maximum around Re ≈ 62, in qualitative agreement with
the trend reported by Pier (2002, figure 6, filled circle curve) and obtained through
an approximate locally plane-wave analysis (see also figure 16 for a comparison).
Note, however, that only in the neighbourhood of the critical point is the predicted
Strouhal number in good agreement with the experimental data of Williamson (1996).
Linear theory, in fact, is unable to predict the real vortex-shedding frequency in the
unstable regime far from the critical point; in these conditions nonlinear effects
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Figure 8. Spatial distribution of the velocity field modulus ‖û(x, y)‖ at Re =50.

become important and substantially modify the St − Re relationship away from the
linear result of figure 7.

6.1. Direct and adjoint mode characteristics

Figures 8 and 9 show the modulus of the velocity ‖û(x, y)‖ and pressure |p̂(x, y)| of
the perturbation at Re = 50, a value corresponding to a weakly unstable configuration.
The dashed line in the pictures indicates the boundary of the separation bubble, while
the solid lines are the isolines corresponding to the tick values in the grey-level scale.
In the neighbourhood of the critical point, the maxima of q̂ are located far downstream
of the recirculating region. A surprising fact, in the light of this result, is that
both Zebib (1987) and Hill (1992) obtained converged results with a computational
domain too short to capture the maxima of the direct eigenfunctions. In their case,
the choice of a small domain was mainly dictated by the use of cylindrical coordinates
with the ensuing degradation of the spatial resolution with radial distance. The
numerical approach used here, on the other hand, allowed us to perform the calcula-
tions on a much larger domain: in this way we were able to resolve the details of
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Figure 9. Spatial distribution of the pressure modulus |p̂(x, y)| at Re= 50.

the far wake and determine the locations of the eigenfunction maxima. In the case
of Re =50, the modulus of the velocity reaches its maximum at x ≈ 17, while the
pressure perturbation peaks at x ≈ 6.5. Beyond these locations, the mode components
slowly decay in the streamwise direction. At the outflow boundary, small-amplitude
reflected waves are produced by the numerical boundary conditions (4.5b). Such
waves decay fast in the upstream direction and consequently their influence is limited
to a small region located far from the separation bubble. In an attempt to reduce
such oscillations, the calculations were repeated implementing the outflow boundary
conditions (4.6b). Although the computed fields were smoother, the results confirmed
that the oscillations have a negligible effect on the global mode structure, as evident
from the repeatability of the obtained eigenvalues. An explanation of this unexpected
robustness of the eigenvalue computation can be found in the analysis in § 8.

The spatial structure of the global mode changes considerably in the range of
Reynolds numbers investigated. The maxima of û, v̂ and p̂, in fact, move gradually
upstream when Re becomes larger, while the size of the separation bubble tends to
increase linearly with it. Goujon-Durand, Jenffer & Wesfreid (1994) and Zielinska &
Wesfreid (1995) determined the peak to peak amplitude of the vertical velocity
component of the perturbation for the fully nonlinear global mode, obtaining for the
position xmax of the maximum amplitude of the vortex-shedding envelope the power
law xmax ∼ (Re − Rec)

−1/2. This model predicts that the maximum moves farther and
farther away from the cylinder as the critical Reynolds number Rec is approached
from above. In the present study, this behaviour is not observed. At Re = Rec,
the maximum amplitude of the velocity perturbation is reached approximatively 23
diameters behind the bluff body. The location of the maximum continuously shifts
downstream as the Reynolds number is decreased, even for Re< Rec. For Re � 43, we
were not able to determine the value of xmax; under this threshold, in fact, the maxima
lie out of the larger computational domain used to carry out the stability analysis.
The disagreement between the behaviour predicted by the power law proposed by
Goujon-Durand et al. (1994) and the data obtained from our stability analysis is
not surprising; the power-law model, in fact, is based on the nonlinear dynamics of
the perturbation, whereas the present investigation relies only on a linear approach.
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Figure 11. Receptivity to mass injection (|p̂+(x, y)|) at Re= 50.

Both studies, however, predict a shift of xmax towards the bluff body as the Reynolds
number is increased.

The adjoint mode, on the other hand, shows that the regions of maximum receptivity
to momentum forcing and mass injection are localized in the near wake of the
cylinder, close to the upper and lower sides of the body surface. This can be seen in

figures 10 and 11, which display the spatial distribution of the functions ‖ f̂
+
(x, y)‖

and |m+(x, y)| at Re =50: darker regions are where the forcing terms f̂ and m̂ in
(3.2) are most effective, i.e. give rise to a mode with the largest amplitude. In striking
contrast with the results for the direct mode, the receptivity decays rapidly both
upstream and downstream of the cylinder. As discussed in § 3 (and clearly shown
in (3.10)), the adjoint field f̂

+
(x, y) also represents the sensitivity of the mode to

the initial conditions used to solve the corresponding temporal stability problem.
In particular, modes with large amplitude are produced when the initial conditions
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Figure 12. Receptivity to momentum forcing and to initial conditions for different
Reynolds numbers.

uin(x, y) used to march equations (2.6) are large in correspondence of the darker
regions in figure 10. The adjoint fields preserve their spatial characteristics over
the range of Reynolds numbers investigated in this paper. This is clearly shown in
figure 12, where the receptivity to momentum forcing and to initial conditions is
displayed for different Reynolds numbers. A similar behaviour is also found for the
receptivity to mass injection.

The large spatial separation of the direct and adjoint field is a consequence of
the non-normality of the linearized Navier–Stokes equations which may produce an
extreme sensitivity to forcing (Trefethen et al. 1993; Schmid & Henningson 2001):
for this reason it is important to locate the regions of the flow field which are most
receptive to different kinds of forcing mechanisms. The results of this section show
that the linearized Navier–Stokes operator for the flow around a cylinder is only
moderately non-normal: the values of the components of the adjoint eigenfunction,
in fact, are always rather small. A detailed review on the global mode dynamics and
non-normality is given by Chomaz (2005).

7. Locally plane-wave analysis
The characteristics of the direct and adjoint modes discussed in the previous section

show that the conditions of the flow in the region close to the cylinder wall may have
important effects on the temporal evolution of the whole field. Locating the zones
where the maximum receptivity is attained it is, however, not sufficient to analyse the
process which gives rise to the von Kármán street. The vortex shedding behind bluff
bodies, in fact, is generated by a self-exciting mechanism which requires a different
approach to be fully understood. In the context of slowly evolving media, for example,
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the asymptotic theory developed by Chomaz et al. (1991), Monkewitz et al. (1993)
and Le Dizs et al. (1996) explains the occurrence of an unstable global mode in terms
of the local properties of the flow; relying on the concept of absolute instability, the
theory identifies a precise location in the complex x-plane which acts as a wavemaker
for the entire field. Although the flow in the cylinder wake is highly non-parallel, Pier
(2002) used the asymptotic approach to study the linear and nonlinear dynamics of the
instability performing a local analysis, he determined the limits of the absolutely un-
stable region and determined the position of the ‘wavemaker’. In this section, we repeat
part of his analysis to evaluate the critical Reynolds number and to locate the position
of the complex saddle point. Owing to the high non-parallelism of the base flow it is
impossible here to introduce a small inhomogeneity parameter and perform a rigorous
analysis based on the separation of the fast scale x, characterizing the instability waves,
and the slow scale X over which the base flow experiences an O(1) variation. For this
reason, following Pier (2002), we ignore that the present flow is highly non-parallel
in the near-wake region and derive the local characteristics at a given streamwise
station by freezing the x-coordinate and determining the stability of the parallel
shear flow with velocity profile U0(y) = Ub(x, y). We therefore look for travelling-
wave solutions of the form q(x, y, t) = q̂ l(y) exp(iωt − ikx), where ω is the frequency
and k is the streamwise wavenumber of the disturbance. These waves are governed
by the Orr–Sommerfeld equation (Drazin & Reid 1981) which yields the local linear
dispersion relation ω = Ωl(k, x) between the complex frequency ω and the complex
wavenumber k at the streamwise station x under consideration. The resulting linear
eigenvalue problems in the cross-stream coordinate are solved with the inverse itera-
tion algorithm introduced for the two-dimensional stability analysis. The complex
absolute frequency ω0(x) is found by applying the zero group velocity condition

ω0(x) = Ω(k0, x) with

(
∂Ω

∂k

)
k=k0

= 0 (7.1)

on the local linear dispersion relation (Briggs 1964; Bers 1975). Figure 13 shows
the streamwise evolution of the absolute growth rate Im(ω0) and the real absolute
frequency Re(ω0) for different values of the Reynolds number. Asymptotic theory
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predicts that a global mode can occur only if a sufficiently large region of
absolute instability exists. Results reveal that local absolute instability (Im(ω0) > 0)
prevails downstream of the obstacle when Re > 25, in agreement with the numerical
computations of Yang & Zebib (1988). The complex global frequency ωg is evaluated
by imposing the saddle-point condition

ωg = ω0(xs) with
∂ω0

∂x
(xs) = 0 (7.2)

on the analytic continuation of the local absolute frequency curve ω0(x) in the complex
x-plane. Following Cooper & Crighton (2000), the computed absolute frequency data
are interpolated by a rational function P n(x)/Qn(x), where P n(x) and Qn(x) are
polynomials whose degree is at most n. The saddle point is then found by using a
Newton iteration. Calculations repeated for values of n ranging from 6 to 30 show
a substantial independence of xs from the order of the polynomials. To verify the
results, the singularity is also detected graphically by plotting the absolute frequency
curves for different values of the imaginary part xi of the streamwise coordinate and
determining the value for which a cusp formation, corresponding to the point where
(∂ω0/∂x)(xs) = 0, is visible in the complex ω-plane (see figure 14 for an example at
Re = 50). Finally, the global frequency ωg is calculated by (7.2) for different Reynolds
numbers. Figure 15 displays the variation of the real and imaginary part of xs with Re;
for the configuration studied, the complex saddle point is always located quite far from
the real axis. Figure 16 displays the growth rate and the Strouhal number predicted
by the asymptotic theory for the cylinder wake at different Reynolds numbers. In
order to ease the comparison, data obtained in previous numerical and experimental
investigations are also reported in the same graphs. The results for the frequency
compare well with those obtained by Pier (2002) through a local analysis. The curves
for both the frequency and the Strouhal number show trends qualitatively similar to
those derived through the two-dimensional global analysis. However, a more detailed
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inspection reveals that the quantitative agreement between the two sets of data is
poor. Local analysis, for example, predicts the occurrence of an unstable global mode
at Re ≈ 26, underestimating considerably the value of the critical Reynolds number.
Moreover the Strouhal number curve peaks at Reynolds number Re ≈ 45, whereas the
maximum for the data derived through the bidimensional stability analysis is reached
at about Re = 62. These results confirm that a locally plane-wave analysis is not
suited to performing a precise quantitative study of the instability in the wake of the
cylinder, where non-parallel effects are O(1). Nevertheless, the asymptotic approach
can be useful for obtaining a qualitative picture of the self-exciting process generating
the vortex street and for approximately locating the regions in the real (x, y)-plane
where the instability mechanism acts. From a qualitative point of view, considering
only the real part of xs and observing where the absolute growth rate curve ω0(x)
reaches its maximum value, it is reasonable to suppose that the core of the instability
is placed in the middle of the separation bubble, at an intermediate distance between
the wall of the cylinder and the re-attachment point. In the next section, using a novel
technique based on a structural stability analysis of the LNSE, we will determine
precisely the instability core and we will verify the qualitative predictions based on
the asymptotic approach.

8. Determination of the instability core: receptivity to spatially localized
feedbacks

The large difference betweens the spatial structure of the two-dimensional direct
and adjoint modes described in § 6.1 suggests that the instability mechanism cannot
be identified from the study of either eigenfunctions separately. The asymptotic theory
developed by Chomaz et al. (1991), Monkewitz et al. (1993) and Le Dizès et al. (1996)
in the context of slowly evolving quasi-parallel flows, endows the region around the
saddle point with the fundamental role of ‘wavemaker’ in the excitation of the global
mode. In the context of a two-dimensional modal analysis, a concept similar to that of
‘wavemaker’ can be introduced by investigating where in space a modification in the
structure of the problem is able to produce the greatest drift of the eigenvalue. This
being the case, in fact, it would be justified to claim that the structural perturbation
has hit the ‘core’ of the instability mechanism. This point can be explained better in
the context of a finite dimensional system. Let us consider a generalized eigenvalue
problem of the form

[A + σ1B] · w = 0, (8.1)

and introduce a small perturbation δA of the operator A. The eigenvalue drift δσ1, due
to the structural perturbation δA, is readily obtained by performing the differential

δ{[A + σ1B] · w} = [δA + δσ1B] · w + [A + σ1B] · δw (8.2)

and dot multiplying the result with the adjoint eigenvector ξ . In this way, recalling
that ξ · (A + σ1 B) = 0, we easily obtain the simple relation

δσ1 = −ξ · δA · w
ξ · B · w . (8.3)

Note that the sensitivity of the eigenvalue (and in general of the entire spectrum)
depends on the level of non-normality of the linear operator A (see Chomaz 2005
for a detailed discussion). In cases in which the perturbation operator δA has only
one non-vanishing element, say for example the element δam,n, (8.3) can be further
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simplified to give

δσ1 = −

∑
i,j

ξiδai,jwj

ξ · B · w = − ξmwn

ξ · B · w δam,n =
∂σ1

∂am,n

δam,n. (8.4)

This expression shows that the product between the components of the direct and
adjoint eigenfunctions is the Green’s function for the eigenvalue perturbation induced
by an infinitesimal disturbance δam,n of the operator A. In our case the operators A
and B are the matrices derived from the discretization of the stability problem (2.10),
while the vectors w and ξ are, respectively, approximations of the direct and adjoint
modes. When the perturbations are localized in space, then only a few elements of
δA are different from zero. An expression similar to (8.4) can also be derived for
the differential problem (2.10). Consider, in fact, the perturbed eigenvalue problem
satisfying equations

σ ′
1û′ + L{Ub, Re}û′ + ∇p̂′ = δH(û′

, p̂′), (8.5a)

∇ · û′ = δR(û′
, p̂′), (8.5b)

along with homogeneous boundary conditions. Here δH and δR denote two linear
differential operators expressing the structural perturbation of the original differential
problem, while primes indicate quantities satisfying the perturbed equations. The
eigenvalue drift δσ1 and the eigenfunction perturbation δq̂ ≡ {δû, δp̂} can be related
using a simple expansion in terms of the solution of the unperturbed problem.
Assuming û′ = û+δû, p̂′ = p̂+δp̂′ and σ ′

1 = σ1+δσ1, inserting into (8.5) and neglecting
quadratic terms, we easily obtain

σ1 δû + L{Ub, Re}δû + ∇δp̂ = −δσ1û + δH(û, p̂), (8.6a)

∇ · δû = δR(u, p). (8.6b)

Applying the Lagrange identity to the perturbation field δq(x, y) = δq̂(x, y)exp(σ1t)
and to the adjoint mode g+(x, y) = ĝ+(x, y) exp (−σ1t) corresponding to the eigen-
value σ1, integrating over the domain D, using (8.6) and taking into account the
boundary conditions, we arrive at:

δσ1 =

∫
D

f̂
+

1 · δH(û1, p̂1) + m̂+δR(û1, p̂1) dS∫
D

f̂
+

1 · û1 dS

, (8.7)

relating the eigenvalue drift to the perturbation operators and the adjoint field. This
approach is used here to investigate the structural stability of the flow around a
circular cylinder. Equation (8.7) is valid for a generic structural perturbation: the
associated shift in the eigenvalue can be calculated once the operators δH and δR

are specified. As for the finite-dimensional problem, (8.7) can be further simplified if
we consider structural perturbations localized in space. These may arise for several
different reasons, including changes in the base flow, in the body geometry or even
in the numerical boundary conditions imposed to solve the stability problem. As
an example, we consider here the effects induced by the existence of a spatially
localized feedback. More precisely, we investigate the sensitivity of the eigenvalue
δσ1 with respect to a generic force–velocity coupling. Such a feedback could be in
theory produced by introducing in the flow field a small device which exerts on the
fluid a force whose direction and strength depend on the local value of the velocity
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Figure 17. Receptivity to spatially localized feedbacks at Re =50.

perturbation. In a sense, a similar mechanism can be considered as the ‘wavemaker’
of the asymptotic theory. In a linear theory approach, the feedback process can be
mathematically described through a relation of the form

f = C(x, y) · u (8.8)

where C is the 2×2 matrix of the coupling coefficients, while u and f are the velocity
and the force fields in (2.6). Generally, the coupling coefficients in the matrix are
functions of the coordinates (x, y). However, if the feedback is localized in space, we
can simplify the model by assuming

C(x, y) = δ(x − x0, y − y0)C0, (8.9)

where C0 is here a constant coefficient matrix, (x0, y0) indicates the position where the
feedback acts and δ(x − x0, y − y0) denotes the Kronecker delta function. A bound
for the eigenvalue drift due to the localized feedback mechanism can be derived
by considering the Laplace transform of (8.8) and taking δH(û, p̂) = C(x, y) · û and
δR(û, p̂) = 0 in (8.7). In this way, using (8.9), we obtain

|δσ1| =

∣∣∣∣
∫

D

f̂
+ · C(x, y) · û dS

∣∣∣∣∣∣∣∣
∫

D
f̂

+ · û dS

∣∣∣∣
� ‖C0‖λ(x0, y0) (8.10)

where we have defined the function λ(x, y) as

λ(x, y) =
‖ f̂

+
(x, y)‖‖û(x, y)‖∫

D
f̂

+ · û dS

∣∣∣∣∣∣∣∣
. (8.11)

Equation (8.10) shows that the product between the direct and adjoint fields gives
the maximum possible coupling among the velocity components. The function λ(x, y)
can therefore be used to determine the locations where the feedback is stronger,
identifying in this way the regions where the instability mechanism acts. Figure 17
shows that large values of λ(x, y) are attained in two lobes located symmetrically
across the separation bubble. Note that both close to the cylinder and far from it,
the product of the adjoint and direct modes is small, showing that these areas of the
flow are not really important for the instability dynamics.
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Figure 18. Contour plot of the function λ(x, y) at different Reynolds numbers.

If the Reynolds number is increased, the spatial separation between the maxima of
the direct and adjoint modes is reduced, but the main characteristics of λ(x, y) remain
unaltered. As figure 18 shows, in fact, the maxima of λ(x, y) are always located in
two symmetric lobes across the separation bubble and slowly move downstream when
the value of Re is increased. In the cases considered, however, the maxima lie at
a distance from the cylinder wall smaller than the recirculation length Lw (see also
figure 6).

8.1. Sensitivity of the eigenvalue

The spatial distribution of the product between the direct and adjoint eigenfunctions
suggests that the characteristics of the global mode are dictated mainly by the
conditions existing in the region where values of λ(x, y) substantially different from
zero are attained. In order to check this hypothesis, the stability analysis can be
repeated on progressively shortened domains in order to verify the influence of the
different regions of the flow on the eigenvalue. Note that the problem of determining
the sensitivity of σ1 to the size of the computational domain naturally fits in a
structural stability framework; resizing the domain, in fact, is substantially equivalent
to changing the boundary conditions of the discretized problem. The numerical results
are in good qualitative agreement with the predictions based on the spatial analysis
of the product between the direct and adjoint modes and show that the eigenvalue
varies significantly only when the boundary conditions are placed in the proximity
of the regions in which λ(x, y) is significantly different from zero. As an example,
table 2 gives the values of σ1 obtained by performing the stability analysis on several
restricted domains. Until the instability core is included inside the computational
boundaries, the eigenvalue drift remains relatively small. The spatial structure of the
mode is also substantially preserved. This can be seen in figure 19 which compares the
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Domain size Eigenvalue σ1

[−25 : + 50] × [−20 : + 20] 0.01295 + 0.75022i
[−10 : + 10] × [−10 : + 10] 0.01398 + 0.75152i
[−5.0 : + 10] × [−5.0 : + 5.0] 0.01507 + 0.75040i
[−4.0 : + 9.0] × [−3.0 : + 3.0] 0.02196 + 0.75318i
[−2.5 : + 8.0] × [−2.5 : + 2.5] 0.02692 + 0.76852i
[−1.0 : + 7.0] × [−2.5 : + 2.5] 0.00208 + 0.80386i

Table 2. Eigenvalue sensitivity to the size of the computational domain.
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Figure 19. Spatial distribution of the velocity modulus at Re= 50 obtained on a
[−10 : 10] × [−10 : 10] computational domain (upper part) and on the larger domain
[−25 : 50] × [−20 : 20] (lower part). Figures are symmetric with respect to y =0.

modulus of the velocity obtained from a computation on a [−10 : 10] × [−10 : 10] grid
with the results obtained on the larger domain [−25 : 50] × [−20 : 20]. The wiggles at
the outflow boundary are due to reflected waves produced by the outflow numerical
boundary conditions. Such waves are confined in a narrow strip and do not modify
the main characteristics of the mode. As expected, imposing the inflow conditions
near the cylinder surface is less effective than setting the outflow boundary across
the separation bubble. Even when the cylinder is excluded from the computational
domain, a reasonable value for σ1 can still be found. A similar behaviour was also
noticed by Triantafyllou & Karniadakis (1990) who numerically reproduced a vortex
street by using a computational domain restricted to the region downstream of the
obstacle. These results confirm the qualitative predictions based on asymptotic theory
and show that the core of the instability is located behind the cylinder, almost at
the end of the recirculating region. Furthermore, this approach explains why the
calculations of Zebib (1987) and Hill (1992) gave the correct results despite the small
computational domain used.

8.2. Comparison with experiments and relevance to vortex shedding control

In order to validate the results obtained through the structural stability analysis
and show the relevance of this new technique to the control problem, we compare
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in a zero growth rate (Re(σ1) = 0) of the temporal mode (from Strykowski & Sreenivasan
1990).

our theoretical predictions with the experimental and numerical data obtained by
Strykowski & Sreenivasan (1990). As noticed by Chomaz (2005), in fact, the structural
stability prediction agrees qualitatively well with the numerical and experimental data
obtained by these authors. In an attempt to control the von Kármán street they placed
a second, much smaller, control cylinder in the near wake of the main cylinder and
noticed that in choosing a proper placement the vortex shedding was considerably
altered and even suppressed altogether over a limited range of Reynolds numbers.
Temporal growth rate measurements of the velocity fluctuations revealed that the
presence of the smaller cylinder reduces the growth rate of the disturbances leading
to vortex shedding and that its suppression, accompanied by the disappearance of
sharp spectral peaks, coincides with negative temporal growth rates. Experimental
results were substantiated by numerical investigations performed by solving the
incompressible Navier–Stokes equations. The results confirmed the existence of two
finite spatial domains symmetrically placed about the line y = 0 within which the
placement of the control cylinder can suppress the vortex street. The shape of these
regions depends on the ratio κ = D∗/d∗ between the diameters of the main and
secondary cylinder and shrinks with increasing κ . When the control cylinder was
placed anywhere within these regions, the vortex street was suppressed completely.
At Re =80, the largest value of the diameter ratio which was capable of vortex
suppression was κ =10. Experiments conducted in a low-turbulence wind tunnel with
blockage ratio H/D =60 (H is here the width of the wind-tunnel test section) showed
that for κ = 10, complete suppression is possible for Reynolds number up to 80.
For larger values of Re, the vortex shedding was still visible, but the growth rate of
the disturbances was considerably smaller than in the uncontrolled case. Strykowski
& Sreenivasan (1990) represented the influence of the control cylinder for different
Reynolds numbers by plotting the locus of all points in the (x, y)-plane corresponding
to a zero growth rate (figure 20). As the Reynolds number is increased, we reach
a value at which the contours shrink to a point. In this case, the position of the
control cylinder is critical and suppression at higher Reynolds numbers is impossible.
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The results of this experiment can be explained in terms of the structural stability
analysis previously set forth. The placement of a small cylinder in the near wake of
a bluff body, in fact, results in a reaction force acting on the fluid which modifies
the flow field and leads to a shift of the eigenvalue σ1. Since the control cylinder
is small, its presence can be thought of as a localized structural perturbation of the
linearized governing equations consisting in a localized feedback from velocity to
force. Comparing figures 17 and 20, we notice a striking similarity between the two
results. Considering that the secondary cylinder used in the experiment has a small but
finite radius, the agreement between the theoretical predictions and the experimental
data is qualitatively good. In particular, note how the regions where the placement
of the control cylinder produces the maximum effect are well determined by the
analysis based on the product between the direct and the adjoint mode. As observed
by Strykowski & Sreenivasan (1990), placing the secondary cylinder downstream of
these regions is not effective for vortex-shedding suppression, confirming in this way
that the core of the instability lies in a region located 3–4 diameters downstream of
the main cylinder. This example shows how the technique based on the structural
stability analysis of the governing equations can be used to design efficient control
strategies for the vortex shedding behind bluff bodies.

9. Summary and conclusions
In this paper, we perform a stability analysis of the flow around a circular cylinder

using linear theory. An immersed boundary technique is used to represent the body
surface on a Cartesian mesh. The stability properties of the base flow are analysed by
solving numerically a two-dimensional generalized eigenvalue problem. The spatial
structure of both the direct and adjoint modes is investigated, and the regions of
the flow most sensitive to momentum forcing and mass injection are located. The
analysis shows that the maximum of the perturbation envelope amplitude is reached
far downstream of the separation bubble, whereas the highest receptivity is attained in
the near wake of the cylinder, close to the body surface, in agreement with Hill (1992).
The large difference between the spatial structure of the two-dimensional direct and
adjoint modes, owing to the non-normality of the linearized Navier–Stokes operator,
suggests that the instability mechanism cannot be identified from the study of either
eigenfunctions separately. A structural stability analysis is therefore performed in
order to understand better the mechanism which is at the base of the self-sustained
mode. In particular, the core of the instability is identified by inspecting the spatial
structure of the product between the direct and adjoint eigenfunctions. This quantity
takes into account the ‘feedback’ which is at the origin of the self-excited oscillation
and is therefore useful to locate the region of the flow which acts as a ‘wavemaker’.
We found that the maximum possible coupling among the velocity components is
obtained approximately at the end of the separation bubble, in two regions located
symmetrically across the line of symmetry of the base flow. Our results confirm
the qualitative predictions of the asymptotic theory, in spite of its application being
justified in principle only in media with slowly evolving properties. The technique
introduced here, on the other hand, accounts for strong non-parallel effects and can
therefore be used to investigate the nature of complex flow configurations and to locate
the regions where the instability mechanism acts. The theoretical predictions based on
the structural stability analysis compare well with the experimental and numerical data
of Strykowski & Sreenivasan (1990), showing the relevance of this novel technique to
the development of effective control strategies for vortex shedding behind bluff bodies.
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A preliminary version of this work as been presented as a poster at the 5th
Euromech Fluid Mechanics Conference (EFMC) held in Toulouse, France on 24–28
August 2003.
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